Today I Learned

Some of the things I've learned every day since Oct 10, 2016

74: Linearly Separable Values (Euclidean)

2 sets X_1, X_2 of points in n-dimensional Euclidean space E^n are linearly separable if and only if there exists a non-zero vector \mathbf{w} \in E^n and a number k such that

\mathbf{w} \cdot \mathbf{x} < k

holds for every \mathbf{x} \in X_1, and does not hold for every \mathbf{x'} \in X_2. Intuitively, this means that two sets of points in an n-dimensional Euclidean space are linearly separable if there is an (n-1)-dimensional plane that when inserted into the same space separates the two sets.

(This concept could probably be extended to spaces which share certain properties with E^n, such as having a partial order, closure, etc., but E^n gives the simplest example.)


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: